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Abstract. We present a novel bi-objective approach to address the
data-driven learning problem of Bayesian networks. Both the log-likelihood
and the complexity of each candidate Bayesian network are considered
as objectives to be optimized by our proposed algorithm named Non-
dominated Sorting Genetic Algorithm for learning Bayesian networks
(NS2BN) which is based on the well-known NSGA-II algorithm. The core
idea is to reduce the implicit selection bias-variance decomposition while
identifying a set of competitive models using both objectives. Numerical
results suggest that, in stark contrast to the single-objective approach,
our bi-objective approach is useful to find competitive Bayesian networks
with a balanced trade-off between accuracy and complexity.
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1 Introduction

A way to build a Bayesian Network (BN) is adopting a data-driven inductive
approach; in this case, the learning task is framed as a combinatorial optimization
problem with two components: a metric to assess the quality of each BN candi-
date, and a search procedure to move through the space of candidate networks.

In data-driven BN learning, it is common to implement metrics in the form of
a penalized log-likelihood (LL) function, as minimum description length (MDL).
While adding an edge to a BN never decreases the likelihood –and hence irrele-
vant arcs should be discarded– adding extra arcs leads to two main problems: the
overfitting problem and densely connected networks. To avoid complex networks,
a penalty term is used. However, complex networks may have a low LL score value
but overfit the model, while a high penalty term may incur in underfitting. Thus,
it is desirable to have networks with a suitable balance between the goodness of
fit (accuracy) and complexity.

Some researchers point out that the trade-off between accuracy and com-
plexity should be featured as a bi-objective problem [5, 11] however, to the best
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of our knowledge, estimation of those values has not been previously used in
a bi-objective approach for model selection in BN. Our work addresses this
combination. The remainder of this paper is structured as follows: Section 2 de-
scribes related work. In Section 3, background about BN, MDL and bi-objective
optimization problem are presented. In Section 4, our proposed algorithm is
described. Section 5 presents the experiments and discusses the results. The
concluding section summarizes the findings and gives an account for future work.

2 Related Work

There exist two main approaches to the use of crude MDL to learn BN: to find
the true model (that has given rise to the data), known as the gold-standard
network [8] and to find a model with a good trade-off between the accuracy
and complexity [6]. Accuracy in this context refers to the computation of the
log-likelihood of the data given a BN structure; it should not be confused with
classification accuracy (see Equation 1).

Cruz-Ramı́rez et al. [3], performed an exhaustive experiment with four-node
networks. Therefore, eventhough these results show how crude MDL produces
well-balanced models in terms of complexity and log-likelihood, those experi-
ments have a limited scope of four-node networks and they left for future work
to explore the search procedure.

Previous studies have addressed the BN model selection problem using evo-
lutionary algorithms, for instance, see [2, 13, 10]. However, none of them has
tackled the problem in a multi-objective way.

Lastly, the work of Ross and Zuviria [12] uses a multi-objective genetic
approach to induce dynamic BNs from data with a trade-off between likelihood
and complexity. This work is focused on the modeling of biological phenomena
that typically requires low-connectivity networks. However, to the best of our
knowledge, this work is the only one with multi-objective criteria learning.
Although, is in the context of dynamic BN.

In summary, the learning problem of BN using MDL as a metric has been
dealt with mainly as a single-objective problem. However, it is possible that one
objective tends to dominate the search procedure and will also add bias-variance
decomposition to the kind of result obtained.

3 Background

3.1 Bayesian Networks

A BN is a graphical model that represents a joint probability distribution over
a set of random variables {X1, . . . , Xn}. BNs are represented as a pair (G,Θ),
where the directed acyclic graph (DAG) is represented by G = (U,EG); U is the
set of nodes or random variables, and EG is the set of arcs that represent the
probabilistic relationship among these variables. The parents of Xi are denoted
PAi;Xi is independent of its non-descendant variables given its parents.
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Thus, Θ is a set of parameters which quantify the network. The joint prob-
ability distribution can be recovered from local conditional probability distribu-
tions as:

P (X1, . . . , Xn) =
∏n

i=1 P (xi|PAi).

3.2 Minimum Description Length

The crude definition of MDL [6] is of the form:

MDL = −logP (D|Θ) +
k

2
log n, (1)

k =

m∑
i=1

qi(ri − 1), (2)

where D is the dataset, Θ represents the parameters of the model, k is the
dimension of the model, and n is the sample size. The parameter Θ is the
corresponding local probability distribution for each node in the network. The
dimension of the model (k) is given by Equation 2.

For the case of Equation 2, m is the number of variables, qi is the number of
possible configurations of PAi;Xi and ri is the number of values of the variable.

The first term of Equation 1 measures the accuracy of the model (f1) and
the second term measures the complexity (f2). The complexity of a BN is
proportional to the number of arcs, as shows the Equation 2.

3.3 Multi-Objective Optimization Problem

According to Deb [4], a multi-objective optimization problem (MOOP) can be
seen as a search problem that aims to minimize or maximize two (or more)
objectives that are usually in conflict. Without loss of generality, a MOOP can
be defined as: ~f(~x) = [f1(~x), f2(~x), . . . , fl(~x)] where ~x = [x1, . . . , xn] ∈ Nn is an

n-variable decision vector, ~f is the set of objective functions to be minimized or
maximized, and l is the number of objectives.

According to this idea, the following definitions are provided: a) a solution
x1 dominates a solution x2 (denoted by x1 � x2) if the solution x1 is not worse
than x2 in all objectives and it is better than x2 in at least one objective. In
MOOPs there is not a single optimal solution, conversely, we can find a set of
solutions that have no other solution which dominates them when all objectives
are currently considered. Hence, the set of non-dominated solutions is called
Pareto optimal set, and the evaluations of each non-dominated solution in each
objective function are known as the Pareto front [4].

4 Non-Dominated sorting Genetic Algorithm (NSGA-II)

NSGA-II is a fast elitist multi-objective evolutionary algorithm proposed by Deb
et al. [4]. In NSGA-II the individuals are ordered into non-dominated sets called
fronts. A rank based on the number of the front is assigned to each individual.
To know how close an individual is to its neighbors, the crowding distance is
computed for each individual.
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Algorithm 1 NS2BN
1: G=0 {Generation}
2: Generate a population P of random solutions ~xi, ∀i, i = 1, . . . , POP SIZE
3: Repair cycles of each ~xi ∀i, i = 1, . . . , POP SIZE
4: Evaluate the fitness functions using the first and the second term of the Eq. 1 of each ~pi ∀i, i =

1, . . . , POP SIZE
5: while G ≤ Gmax do
6: Crate offspring population Q using: binary tournament selection, one-point crossover and bit

inversion mutation.
7: Repair cycles
8: Evaluate the fitness functions using the first and the second term of the Eq. 1 of each ~xi ∀i, i =

1, . . . , POP SIZE
9: Combine parents and offspring population R = P ∪Q

10: Sort using non-dominated criterio
11: Replacement
12: G = G + 1
13: end while

The selection of parents is performed by using a binary tournament based
on the rank and the crowding distance. The selected parents generate offsprings
through crossover and mutation operators.

The pseudocode of the proposed approach named Non-dominated Sorting
Genetic Algorithm for learning BN (NS2BN) is presented in Algorithm 1.

For the carried out of NS2BN: i) the representation of the individual is
adjacency matrix, and ii) a repair operator that replaces values randomly when
a cycle is identified.

5 Experiments and Results

5.1 Experimental Setup

This section presents the experimental setup. Firstly, we proposed four golden-
standard networks with 6-nodes and the following characteristics: i) two of them
with 8 arcs each one, and ii) two of them with 7 and 9 arcs, respectively; we call
them A RDP, B RDP, C LED, and D LED, accordingly. In the four networks,
all the random variables are binary, since this does not produce any qualitative
impact on results in comparison to non-binary variables [1]. Then, we generate
the datasets through these networks in instances of 1000, 5000, and 10000 cases.
The first two of these databases were generated using a random probability
distribution and the next two were generated with distribution p = 0.1 that
according to [1] changing the parameters to be high or low tends to produce
low-entropy distributions which have more potential for data compression.

Additionally, we include the following datasets: Asia that has 8-nodes and
8 arcs and Car Diagnosis that has 18-nodes and 20 arcs. Both networks were
tested using the dataset with 1000, 5000 and 1000 instances.

Ten independent runs were made by each algorithm per database, with
20, 000 evaluations. A single objective Genetic Algorithm [9] (GA) was carried
out for comparison propose. The individual representation consists of an adja-
cency matrix; the fitness function is the crude MDL, as described in the previous
subsection (3.2).
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In this algorithm, binary tournament parent selection, one-point crossover
and bit inversion mutation are employed. The GA finds a single network for each
execution, the network with the best MDL is chosen as the “genetic solution”,
meanwhile, in NS2BN the result of a run is a set of solutions with a variety
of accuracy and structural complexity measurements. To choose an overall best
solution from the Pareto front is scientifically invalid due to all the solutions are
equally desirables, and normally the decision corresponds to a high-level expert
knowledge in the modeling field.

In this work, to have a comparison between the multi-objective approach
and the single-objective approach, from the accumulated Pareto front of ten
executions, the solution nearest to a reference point which is (0, 0) is chosen. To
find this solution, all of them were normalized and the Euclidean distances were
computed between the reference point and each Pareto solution. The solution
with the shortest Euclidean distance is referred to as the “chosen solution” in
this work.

The experimentation is presented in two parts 1) the comparison against the
gold-standard network, the genetic solution and the chosen solution in terms
of the Kullback-Leibler divergence (KLD) computed as the log2 of the ratio of
gold-standard network/chosen solution or genetic solution, according to the case,
and 2) the analysis of the plots of the accumulated Pareto fronts.

The parameters setting employed by NS2BN and the GA were tuning empir-
ically. The parameters are the follows: POP ZIZE = 100, Gmax = 200, C = 0.9
and M = 0.3.

5.2 Results

Table 1 shows the results of the computation of the KLD. According to such
a test, there were in ten databases significant differences in favor of the chosen
solution that means that the chosen solution is closest to the gold-standard
network concerning the subjacent distribution.

Since the genetic algorithm is searching for the minimum value of MDL,
the genetic solutions show a minor MDL in sixteen databases. However, one of
the objectives is punished in those results. The Figures 1d to 1f show how the
genetic solution tends to choose solutions with a smaller log-likelihood but more
complex, a similar situation occurs in the Figures 1g to 1i where the genetic
algorithm chooses solutions less complex but with a worst log-likelihood value.

Regarding the sample size, Grünwald [6] points that crude MDL does not
work well when the sample size is small or moderate and Hastie et al. [7] point
out that a metric like crude MDL, in a finite sample, tends to select models
less complex. However, these results agree with Grünwald and in contrast to
Hastie’s et al. our work, show a bias when the sample size is greater in the
Genetic Solution, which is used a weighted sum, since this solution tends to
select a more complex model (see Figures 1b, 1c, 1e, 1f, 2b, 2c, 2e and 2f).

The experiments generated by a low-entropy distribution show, as was pointed
by Cruz-Ramı́rez et al. [3] that the presence of noise rate affects the behavior
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(c) A RPD. 10000 cases
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Fig. 1. Accumulated Pareto front of the twelve first databases with 6-nodes with
random probability distribution (RPD) and low-entropy probability distribution
(LED). Gray stars - the accumulated front obtained by five runs of NSGA-II.
Blue triangle - the golden-standard network. Pink square - the genetic solution
and then green circle - the chosen solution from the Pareto front.

of MLD which tends to prefer the less complex models, even a network with
no arcs.
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Fig. 2. Accumulated Pareto front of the well-known benchmark databases with
the different number of cases. Gray stars - the accumulated front obtained by five
runs of NSGA-II. Blue triangle - the golden-standard network. Pink square - the
genetic solution and the green circle - the chosen solution from the Pareto front.

However, these results show, independent of the sample size, solutions with
better values in both terms (see Figures 1g to 1l).

6 Conclusion and Future Work

In this paper, a novel evolutionary bi-objective optimization approach for model
selection of BN was presented.

The accuracy and the complexity, which are related to bias and variance
respectively, were adopted as the objectives to be optimized to obtain models
with an acceptable generalization performance. A set of trade-off solutions was
obtained per database. A solution nearest to the origin was chosen as a com-
petitive solution with a suitable trade-off between the objectives. This chosen
solution was compared with a single-objective solution. The chosen solution
achieved competitive results, especially in the complexity. It is important to
note, that one of the main advantages of this approach is the set of trade-off
solutions and that the selection of a model can be a high-level decision and
must be performed by a domain expert of the modeling phenomenon. Additional
advantages are that the proposed method can be applied to a database from
different domains and can be extended to other models. As future work, different
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Table 1. Kullback-Leibler divergence computed between the gold-standard
network with the genetic search solution and the gold-standard network with
the chosen solution of the Pareto front. Values in boldface mean the best value
found.

Golden-network Genetic search Chosen solution

A RPD. 1000 cases 0.006256036 0.000412874

A RPD. 5000 cases 0.000735484 0.000166667

A RPD. 10000 cases 0.000622825 0.010558429

B RPD. 1000 cases 0.5008542 0.512832286

B RPD. 5000 cases 0.50817743 0.527715617

B RPD. 10000 cases 0.501635069 0.506660672

C LED. 1000 cases 0.006859061 0.000558415

C LED. 5000 cases 0.001254388 8.84927E-06

C LED. 10000 cases 0.000630321 0.000231126

D LED. 1000 cases 0.005505678 0.001674059

D LED. 5000 cases 0.001196043 0.0007695

D LED. 10000 cases 0.000561088 0.000529102

Asia 1000 cases 0.184669176 0.183903387

Asia 5000 cases 0.279944777 0.277977466

Asia 10000 cases 0.272191288 0.262362486

Car diagnosis 1000 cases 0.161505741 0.278079726

Car diagnosis 5000 cases 0.160725004 0.192815203

Car diagnosis 10000 cases 0.200548739 0.223971025

methods can be used to evaluate accuracy and complexity. Also, alternatives to
reduce the computational cost of the algorithm can be included.
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